Topic Modelling for Vaccine Safety Signal Detection

Sedigheh Khademi, Pari Delir Haghighi

Monash University

Jan 2019

Vaccines Importance

alterdoctor.in/sentinel

Potential evolution of an immunization program

Social Media as a data source

Data

- Twitter data was collected from February to May 2018
- 341,507 tweets were collected
- Keyword search for "vaccination, vaccinations, vaccine, vaccines, vax, vaxx, vaxine, vaccinated, vacinated, flushot, flu shot"

Labelling data

Label	Topic
0	Vaccine Safety Signals
1	Enquiries / Discussions mentioning vaccines
2	Obvious sentiment against vaccines – anti-vax
3	Sentiment against anti-vax viewpoints, pro vaccines
4	Statements from vaccine related organizations
5	News articles and other factual or fake news
6	Nonsense / Spoof hijacking Vaccine meme
7	Everything else
11	Animal related
12	Advertising
99	Unlabelled data

Potential safety signal posts

Vaccinations suck when they make ur baby sick :(

I got a flu shot Tuesday and my arm seriously hurts so bad.

I got my flu shot on March 1 (03/01). By Friday (03/09), I had noticeably developed a runny nose, cough and sore throat.

Data Cleaning

- Removed duplicates
- Converted from Unicode to plain text
- Converted to lower case
- Eliminated URLs
- Removed the retweet tag and @user references and the hash symbol from hashtags
- Replaced text-based emoticons with plain English:

Vaccinations suck when they make ur baby sick :(

Vaccinations suck when they make ur baby sick <sad>

Data Cleaning

- Removed posts:
 - having less than five words:
 vaccines might cause autism
 - with a high number of non-unique (therefore repeated) words:

 Get your shots shots shots shots shots
 - with a low number of English words:
 Nice milestone for NVAXNVAX IBB XBIXBI FBT

Data was reduced from 341,507 to 329,842 documents

Contractions were expanded prior to tokenisation:

Don't →do not

they'd → they would

• Stop words were removed, except for "do" and "not" The source was nltk.corpus library, examples:

me

a

if

or

as

to

from

some

Bigrams and trigrams were created

```
Bigrams:

arm_hurt

side_effect

sore_throat

Trigrams:

measles_mumps_rubella

compromised_immune_system

highly_contagious_respiratory
```

- Data was tokenized and lemmatized, retaining nouns, adjectives, verbs and adverbs
- A dictionary of lemmatized terms was constructed containing 100,148 tokens
- Dictionary was trimmed, removing words that occur in less than 20 or in more than 50% of the documents.

Token count: 9,986

Document count: 328,822

Topic modelling

- Aim to discover and annotate large archive of documents
- Set of techniques that analyse the words of the documents to discover the themes that run through them
- The number of topics to be discovered is predefined
- Do not require any prior annotation or labelling
- A document may have multiple topics

Topic modelling algorithms

Python library for:

- Scalable statistical semantics
- Analyze plain-text documents for semantic structure
- Retrieve semantically similar documents

MALLET is a Java-based package for:

- Statistical natural language processing
- Document classification
- Clustering, topic modeling, information extraction

JLDADMM

A Python library ideal for topic modelling on short text

What makes a useful model

- Differentiates topics in an understandable way
- Creates enough topics so that there is a clear difference between them, not so many that the differences are only slight
- Isolates topics that clearly identify documents containing safety signal

Topic model evaluation

- Manual examination of the topics and the most dominant words
- Coherence score
- Comparison with annotated documents

The best model's labelled document distribution

14 Topic model - the best topic for labelled records is get_flu_shot

	Labels										Labelled		Grand
Topics	0	1	2	3	4	5	6	7	11	12	Total	99	Total
get_flu_shot	220	166	15	18	1	0	64	0	1	0	485	37,117	37,602
autism	0	44	36	141	0	0	220	0	1	0	442	46,407	46,849
not_vaccination	0	36	60	14	0	9	45	2	0	0	166	36,001	36,167
health_child	0	15	18	5	0	6	12	0	0	0	56	25,831	25,887
flu_shot	0	29	3	6	2	2	12	0	0	1	55	23,623	23,678
disease_child	1	22	3	8	2	1	9	0	0	0	46	20,372	20,418
pets_ads	0	10	0	1	4	1	13	0	2	1	32	19,136	19,168
vax_new	1	5	0	0	0	0	21	3	0	0	30	16,260	16,290
free_vaccination	0	17	0	0	5	2	0	0	0	2	26	18,195	18,221
cancer_research	0	6	0	0	10	4	2	0	0	0	22	19,528	19,550
research	0	5	0	0	4	3	2	1	0	0	15	22,647	22,662
vaccines_work	0	4	0	2	1	2	1	0	0	0	10	17,286	17,296
outbreak	0	3	0	0	0	2	3	0	0	0	8	13,098	13,106
hpv_cancer	0	5	0	1	0	0	1	0	0	0	7	11,921	11,928
Grand Total	222	367	135	196	29	32	405	6	4	4	1,400	327,422	328,822

Labelling data

Label	Topic
0	Vaccine Safety Signals
1	Enquiries / Discussions mentioning vaccines
2	Obvious sentiment against vaccines – anti-vax
3	Sentiment against anti-vax viewpoints, pro vaccines
4	Statements from vaccine related organizations
5	News articles and other factual or fake news
6	Nonsense / Spoof hijacking Vaccine meme
7	Everything else
11	Animal related
12	Advertising
99	Unlabelled data

Examples of model's topics with their most dominant words:

Document counts

- 328 thousand documents
- 1400 labelled
- 222 safety signals

Summary of first phase calculations over labelled data

,	Safety	Other	Labelled	Un-	Grand	
Topic	signal	labels	Total	labelled	Total	
get_flu_shot - topic 13	220	265	485	37,117	37,602	45.4%
Other topics	2	913	915	290,305	291,220	
Grand Total	222	1,178	1,400	327,422	328,822	

99.1%

Two
phases of
topic
modelling

Summary of the best topic from the second phase

Summary of second phase calculations

	Safety	Other	Labelled	Un-	Grand	
Topic	signal	labels	Total	labelled	Total	
Topic 8	179	37	216	2,856	3,072	82.9%
Topics 9 and 1	32	110	142	15,587	15,729	
Other topics	9	118	127	18,674	18,801	
Grand Total	220	265	485	37,117	37,602	

81.4%

Final calculations after manual labelling

	Safety	Other	Grand	
Topic	signal	labels	Total	
Topic 8	1,300	1,772	3,072	
Topics 9 and 1	432	15,297	15,729	
Grand Total	1,732	17,069	18,801	

75.1%

42.3%

So far:

Established the efficacy of topic modelling for isolating potential vaccine safety signals

Where to:

- Apply classification methods to improve the detection of documents containing safety signals
- Combine the topic and classification models into the social media data stream download process
- Integrate the process into the Adverse Events Following Immunisation – Clinical Assessment Network (AEFI-CAN)