
Teaching a University-wide Programming
Laboratory

Managing a C Programming Laboratory for a
Large Class with Diverse Interests

Vishv Malhotra and Ashish Anand
Indian Institute of Technology, Guwahati

Assam, India

Introduction – continues

• There are now 23 IITs.
• Five of them are called

original – Pre 1963
• Guwahati is 6th – Mid 1994
• Rest are called New! – Post

2008
• Some have been converted

from existing universities – c.
1847, 1919, 1926)

Motivation for the work

• Given the population of India (~1.3 Billion) that provides students for
these IITs (~12000 places) competition is very strong. (Applicants ≈
130,000)

• Yet at IIT Guwahati in 2017 we had over 130 failing students in a class
of ~700 in Programming Laboratory course.

• This large failure rate does not sit well with the admission processes!
• We suggest that it is due to undue haste in teaching these courses.

• Can we train students to construct programs in a way that
accommodates those who need time as well as those who are quick
programmers?

Agenda for Today’s Presentation

• What causes this disappointing pass-rate?

• What we did to address this cause?

• How we did it?

• What were the outcomes?

• What new concerns this caused?

• Seek your comments and questions.

What may be the Cause of Low Progression-rate?

• The reason for disengagement among the students is (an analogy)

• We train the students to ride push bike for some time.

• Some learn to ride; others may need more time.

• We ignore their need for more time.

• We take all of them to Motorised bike training!

• Broken bones are our fault!

• Students who do not match the pace drop out!

• Solution: Let each student progress at their own pace.

Solution: Break Contents into Useful Parts – Modules

• Create useful modules – Each useful module is
• Made of easily-identified contents and programming skills
• Examinable unit with meaningful target skills
• A sequential skills-progression over the previous module

• Four Modules
1. Module 1: Be able to write programs for computations mimicking a

session with a calculator. Basic types – int, float.
2. Module 2: A single function program – main()with flow controls
3. Module 3: Programming abstractions – functions, parameters – by

value and by reference (pointers), C defined types
4. Module 4: Advanced topics – Pointers, user data-structures, files

Modules, Stages, Drills, Assessments, Examinations

• Module is an examinable unit
giving a set final course grade

• Each module has a number of
stages to support learning and
training.

• Stages in a module are sequential
units supporting training/learning

• Each stage has a drill manual and
a set of assessment problems

Solution – Modules are trained through stages

Module Stage Drill topics

Module 1 Stage 1 Basic UNIX commands

Stage 2 Imperative statements

Module 2
Stage 1 Numerical values and their input-output

Stage 2 Conditional control flow, assert()

Stage 3 Loops, operators with side-effects

Module 3
Stage 1 Non-recursive functions

Stage 2 Arrays, structs, strings

Stage 3
Stage 1 Recursive functions, Call by reference

Module 4 Stage 2
Data structures (linked list, stack),
object orientation, header (.h) files

Stage 3 Files and long-term data storage

Stage: Training Routine

• Stage: Maximum amount of work for a laboratory session
• Students complete a drill lesson for a stage with support from the

tutor(s)
• Students demonstrate (stage) learning by completing a randomly

chosen assessment problem.
• If a student cannot demonstrate learning, student stays at the stage till

stage is learned.

• Module Examinations scheduled at the set dates – Module
examination administered if at least 2 stages completed.

• Success at a module examination delivers the module specific grade

Training and Progression over Modules & Stages

Training Routine: Keller Plans

• Failure at a Module examination (Snake bite)
• Repeat the module training

• Classical approach to teaching: same pace, different learning

• Keller plans: different pace, same learning

• Our approach: different pace, different learning, different grades
• No more than one stage can be completed in a weekly laboratory

session

Outcomes: Benefits of the Changed Arrangements

• Big reduction in the
failed student count

• Shift from the lower
grades to the middle
grades

• Students have clear
view of their options

Effect of the Changed Practice:
Wrong Training Avoided

• Students at grades below CC
have moved up. Because,
• Better support and more

time to learn basic topics.
• Examinations/assessments

appropriate to the
preparedness.

• Students at the top grades see
little change in their ways and
achievements

When the Students Completed each Module?

Module
Mid-Sem Exams End-Sem Exams Total

(%age)Part 1 Part 2 Week 1 Week 2

Module
1

682
(93.0%)

7
(0.9%)

28
(3.8%)

6
(0.8%)

723
(98.6%)

Module
2

474
(64.7%)

108
(14.7%)

62
(8.5%)

644
(87.9%)

Module
3

176
(24.0%)

164
(22.4%)

340
(46.4%)

Module
4

85
(11.6%)

85
(11.6%)

Students’ Say

• It is a nice method for conducting lab classes. Drills and module
concept is fare.

• The Grading system is very confusing to understand in the first go.
Evaluation (in both labs sessions and exams) by the TAs was really
biased for some lab groups.

• From a learning point of perspective, the course was simply flawless.
Practicing 10-15 questions each week and some being very
challenging at the first glance was really amazing and I really learned
a lot. So, I guess pre-disclosure of the assessments for the lab should
be continued.

New Concerns: Plagiarism and Cheating?

Cheating Risk and its Epicenter
Or Did They Over-practice?

Summary: What has been Achieved

• Clear identification of the modules and module contents sets clear plan
to define training needs.

• Assessment and training processes are better understood and managed.

• Students had clear idea of where they stand and had good control over
their time utilisation across their courses

• Unexpected good benefits to the success-rate
• Included challenging skills (Backtracking) during the semester .

Motivated students were not affected by those who seek more time.

And, the faster students not hurry those needing time and support.

Thanks for your presence and attention

I welcome your comments
and

would like to answer questions

Vishv Mohan Malhotra and Ashish Anand. 2019. Teaching a University-wide Programming Laboratory: Managing a C
Programming Laboratory for a Large Class with Diverse Interests. In Twenty-First Australasian Computing Education

Conference (ACE’19), January 29–31, 2019, Sydney, NSW, Australia. ACM, NewYork, NY, USA, pp 1-10.
https://doi.org/10.1145/3286960.3286961

A Drill lesson and a related set of assessment exercises are here: Training Lessons for Minimum Pass Standards in a
University-wide Undergraduate C Programming Laboratory. https://doi.org/10.13140/rg.2.2.22673.89441

Typical Methods Used to Cheat – Sorry Skipping 

• Smuggled solutions
• Assessment exercises were available for the students to practice.

• Unclear boundary to define cheating!
• Bringing paper or electronic copy is wrong
• Is memorising a solution cheating or not?

• It is definitely wrong if the solution was created by a different
person.

• If the student prepared the solution and memorised?
• Do not have a firm opinion.

Another Way Used to Cheat

• printf() correct
answer

• Kept a compiled
version ready to
demonstrate to the tutor
at the end when there is
time pressure.

• Tutors failed to verify
Does the program run
correctly check.

Solutions to cheating Issue?

• Reduce the number of examinations to 3
• Each of 2 hours + 1 hour for checking status

• Collect programs in a per-problem repository and use similarity
checks to catch cheating cliques.
• Automatic tools may give too many false positives for novice, short

programs.

• Drill completion interviews before stage-level assessments
• Time consuming and labour intensive.

