A Set-Based Logical Language for Specification of Combinatorial Models

Anna Zamansky, Maria Spichkova

Contact: maria.spichkova@rmit.edu.au

Combinatorial Model

A combinatorial model is defined as tuple consisting of

- a set of parameters,
- their respective possible values, and
- a set of logical restrictions on the value combinations

Combinatorial Test Design (CTD) - methodology for test design of complex software systems, in which a system is modelled using a combinatorial model

Combinatorial Model

In CTD, a **system** is modelled using a finite set of system parameters

$$\mathcal{A} = \{\mathcal{A}_1, \dots, \mathcal{A}_n\}$$

together with their corresponding associated values

$$\mathbf{V} = {\mathbf{V}(\mathcal{A}_1), \dots, \mathbf{V}(\mathcal{A}_n)}$$

A scenario (test) is an assignment of a value from $V(\mathcal{A}_i)$ to each \mathcal{A}_i A combinatorial model for a system is defined as a set of scenarios.

Combinatorial Test Design (CTD)

 Aim: To systematically optimise the number of test cases, while ensuring the coverage of given conditions.

Issues:

- What should be the process of constructing combinatorial models?
- Does a manual process for modelling and maintaining the test space fit the industry needs? ©

What we would like to have?

- Formalization of the visual notation
- Reducing the cognitive load of the modeller and tester when specifying the logical restrictions
- Reducing the the chances for human errors

Example

Parameters:

- Item Status (denoted by IS)
- Order Shipping (denoted by OS)
- Delivery Timeframe (denoted by DT)

$$\mathcal{A} = \{IS, OS, DT\}$$

Values:
$$IS = \{InStock, OutOfStock, NoSuchProduct\}$$

 $OS = \{Air, Ground\}$
 $DT = \{Immediate, 3Days, 1Month\}$

Example (continues)

Combinatorial model of the system is a set of scenarios (assignments of values to parameters), such as:

$$s_1 : (IS = InStock, OS = Air, DT = Immediate)$$

$$s_2 : (IS = InStock, OS = Ground, DT = Immediate)$$

How many possible scenarios could we have for this example? ©

But in praxis not all scenarios are executable.

Challenge:

Separating the valid (executable) scenarios from the invalid ones

7

More challenges!

The same?

$$R_1: \mathbf{DT} = Immediate \rightarrow \mathbf{OS} \neq Ground$$

$$R_2: \mathbf{DT} = Immediate \rightarrow \mathbf{OS} = Air$$

But what if we add new value for OS?

$$s_3 = (IS = InStock, OS = Sea, DT = Immediate)$$

Challenge:

Inconsistent interpretation of test validity in case a new parameter value is added

CTD Set-Based Logical Language

Let

$$\mathcal{A} = \{\mathcal{A}_1, \dots, \mathcal{A}_n\}$$
 be a set of variables,

$$M_{\mathcal{A}}$$
 be a set $\mathbf{V} = \{\mathbf{V}(\mathcal{A}_1), \dots, \mathbf{V}(\mathcal{A}_n)\}$ of value sets associated with those variables.

Atomic formula:

 $\mathcal{A}_i \in \mathbf{V}(\mathcal{A}_i) \setminus X$,

might be shorter for small data sets

where $X \subseteq V(\mathcal{A}_i)$, $1 \le i \le n$, or a more explicit form

 $\mathcal{A}_i \in Y \wedge Y \subseteq \mathbf{V}(\mathcal{A}_i).$

more explicit and provides more intuitive representation

CTD Set-Based Logical Language (cont.)

A valuation is an assignment of values to variables \mathcal{A}_i so that $v(s_i) \in \mathbf{V}(\mathcal{A}_i)$

We say that (S, v)

is a model of an atomic formula denoted by

$$(S, v) \models \mathcal{A}_i \in V(\mathcal{A}_i) \setminus X \text{ for some } X$$

if $v(\mathcal{A}_i) \in V(\mathcal{A}_i)$ and $v(\mathcal{A}_i) \notin X$

Running Example

$$M_{\mathcal{H}} = \{D_1, D_2, D_3\}$$

$$D_1 = \{InStock, OutOfStock, NoSuchProduct\}$$

 $D_2 = \{Air, Ground\}$
 $D_3 = \{Immediate, 3Days, 1Month\}$

 $DT = Immediate \rightarrow OS \neq Ground$ | can be written in our language in the following ways

$$\psi_1 = \mathbf{DT} \in D_3 \setminus \{3Days, 1Month\}$$

 $\to \mathbf{OS} \in D_2 \setminus \{Ground\}$

$$\psi_2 = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$$

 $\rightarrow \mathbf{OS} \in D_2 \setminus \{Ground\},$

$$\psi_3 = (\mathbf{DT} \in | \{Immediate\} \land \{Immediate\} \subseteq D_3)$$

 $\rightarrow \mathbf{OS} \in \{Air\} \land \{Air\} \subseteq D_2.$

$$v_1(DT) = 3Days$$
, $v_1(OS) = Sea$, $v_1(IS) = Instock$
 $v_2(DT) = Immediate$, $v_2(OS) = Sea$, $v_2(IS) = Instock$

$$D_2' = D_2 \cup \{Sea\}$$

$$M'_{\mathcal{A}} = \{D_1, D'_2, D_3\}$$

Many possible options for correction:

UNIVERSITY

 $\psi_1' =$

 $\psi_1^{\prime\prime} =$

 $\mathbf{DT} \in D_3 \setminus \{3Days, 1Month\}$ \rightarrow **OS** \in $D_2' \setminus \{Ground\}$ $\psi_2' = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$

 \rightarrow **OS** \in $D_2' \setminus \{Ground\}$ $\psi_3' = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$ \rightarrow OS \in {Air} \land {Air} \subseteq D'₂

 $\mathbf{DT} \in D_3 \setminus \{3Days, 1Month\}$

 \rightarrow OS $\in D'_2 \setminus \{Ground, Sea\}$ $\psi_2^{\prime\prime} = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$

 \rightarrow **OS** \in $D_2' \setminus \{Ground, Sea\}$

 \rightarrow OS \in {Air, Sea} \land {Air} $\subseteq D_2'$

$$\psi_3'' = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$$

 $\to \mathbf{OS} \in \{Air\} \land \{Air\} \subseteq D_2' \setminus \{Sea\}$
 $\psi_3''' = (\mathbf{DT} \in \{Immediate\} \land \{Immediate\} \subseteq D_3)$

Proposed Visualisation

$$D_2 = \{Air, Ground\}$$

Parameter: DT	Parameter: OT
Immediate	Air
3Days	Ground
1Month	

$$D_2' = D_2 \cup \{Sea\}$$

Parameter: DT	Parameter: OS
Immediate	Air
3Days	Ground
1Month	Sea

Validity of the new value is decided for $D_2' = D_2 \cup \{Sea\}$

$$D_2' = D_2 \cup \{Sea\}$$

Parameter: DT	Parameter: OS
Immediate	Air
3Days	Sea
1Month	Ground

Parameter: DT	Parameter: OS
Immediate	Air
3Days	Ground
1Month	Sea

What next?

- Tool support
- Scalability analysis
- Application in Learning & Teaching

Thank you!

IS10: Collaboration in Software and System Engineering

Areas of interest include but are not limited to:

- Collaborative modelling and analysis of sustainable software
- Collaborative aspects of global requirements engineering
- Collaborative aspects of formal methods in conceptual modelling, specification, and design
- Collaborative aspects of testing, verification and validation of systems
- New best practices for software and system engineering education to support team-based learning
- Innovative curriculum, assessment or course formats to support team-based learning of software and system engineering
- Diversity in software and systems engineering teams
- Intercultural aspects in software and systems engineering
- Usability aspects in software and systems engineering (including formal methods)
- Successful case studies on application of formal methods in collaborative projects
- Comprehensibility and readability of formal methods in software engineering
- Teaching of formal methods and collaborative aspects thereof
- Cross-disciplinary software and systems engineering (including application of formal methods)
- Industrial challenges, experience reports and case studies