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Motivation

• Examine the potential to use a string pattern matching approach to 
health consumer trajectories as a basis for analysis of chronic 
conditions

• Rather than basing analysis on numeric features, view a healthcare history as 
a sequence of events of different types (i.e. a string of tokens)

• Different sorts of healthcare journeys can be clustered and we can look for 
association to different outcomes

• We’re particularly interested to apply this to cardiovascular disease 
(CVD)

• We have really good data about CVD risk management through the Vascular 
Intelligence using Epidemiology and the Web (VIEW) programme



Background

• Some major decisions for this ‘syntactic’ approach
• What are our tokens? (defining the events of interest)
• What’s our string similarity measure (and how do we cluster)?

• Particularly inspired by
• Yiye Zhang, Rema Padman and Larry Wasserman, “On Learning and 

Visualizing Practice-based Clinical Pathways for Chronic Kidney Disease” AMIA 
Annu Symp Proc. 2014, 1980–1989.



Zhang et al approach to state formation

• State ‘token’ is a combination of visit type (e.g. new patient or follow-up), 
diagnosis (limited to CKD stage and a few comorbidities) and procedure (of 
27)

• String for a patient is a series of distinct tokens ordered by visit date



Longest common subsequence (LCS) distance

• LCS between two strings x, y is the length of longest subsequence 
present in both of them

• A subsequence is a sequence that appears in the same relative order, but not 
necessarily contiguous

• Examples:
LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.
LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

• dLCS(x, y) = |x| + |y|−2LCS(x, y)

• Track record in biomedicine including protein sequence analysis



Our approach for this paper

• Synthetic data set
• VIEW has a lot of ‘real world’ details
• Wanted to establish a baseline with structurally similar data (and where we 

know ‘the answer’ to some degree)

• Explore different clustering methods
• Effectiveness, efficiency

• Examine the clusters
• Do they describe?
• Do they predict?



Simulated CVD hospitalisation & recovery

• Created a population with a distribution of risk factors
• E.g. diabetes, higher risk ethnicities (M&P versus European), smoking status 

etc.
• Assigned ‘risk score’ for each case in line with Framingham risk
• Stratified each case to low, moderate or high risk based on score

• Generated 10,000 individuals
• Simulated 36 months of state transition



States for simulated data

State of Events Denoting 

characters

1. Not-Admitted A

2. Admitted B

3. Intensive care unit (ICU) C

4. Discharged D

5. Discharged with home care E

6. Mortality F



State transition for moderate-risk group
0.50

A B

D E



State transition for high-risk group
0.33

0.33

A B C

D E



Clustering

• For reference used Hierarchical clustering (deterministic) and
k-medoids (non-deterministic)

• Hierarchical requires O(n2) dLCS comparisons
• Might be a problem for big populations with long sequences

• k-medoids is like k-means (picking random cases to build the k 
clusters around) but suitable for dLCS

• Minimizes a sum of pairwise dissimilarities instead of a sum of squared 
Euclidean distances

• Also wanted to try alternative… ant-based clustering (ABC)



Ant-based clustering

• Metaphorical ‘ant’ agents pick up and drop
items on an abstract 2x2 (actually wrapped
at edges) grid

• Pick up and drop items with probability
based on similarity of case to neighbourhood

• Likely to pick up a case that has high dis-similarity
scores with its neighbours

• Likely to drop a case that has low dis-similarity score with its neighbours
• Ants wander randomly or heuristically (e.g. following trails, or moving 

toward cluster centres)
• Resolve by merging nearby cases into clusters



Results - clusters
Cluster 1
Algorithms A B C D E F
K-medoids 22.6 ±

9.02
4.8 ± 2.66 2.01 ±1.8 3.38 ±

2.4
3.87 ±
4.3

1.15 ±
1.28

Hierarchical 33.7 ±
0.6

0.54 ±
0.05

0.04 ±
0.008

0.54 ±
0.03

0.6 ±
0.24

0

Ant-based(improved) 28.69 ±
2.99

2.7 ± 0.95 0.78 ± 0.49 1.15 ±
0.38

2.26 ±
0.84

0.34 ±
0.37

Ant-based(Original) 19.6 ±
8.02

4.05 ±
3.66

2.05 ± 4.6 3.18 ±
4.38

3.87 ±
5.38

3.15 ±
1.42

Cluster 2
Algorithms A B C D E F
K-medoids 7.68 ±

5.6
6.6 ± 4.6 7.57 ± 5.6 3.35 ±

2.16
7.05 ±
2.07

1.15 ±
1.5

Hierarchical 5.83 ±
0.6

5.53 ±
0.41

7.4 ± 0.035 4.1 ±
0.07

6.9 ±
0.02

4.09 ±
0.13

Ant-based(improved) 5.68 ±
0.63

8.7 ± 1.05 7.07 ± 1.07 3.68 ±
0.17

6.57 ±
0.48

4.03 ±
1.25

Ant-based(Original) 15.6 ±
5.8

4.5 ± 3.66 4.9 ± 3.27 4.45 ±
4.13

7.9 ±
2.19

1.32 ±
1.3

Cluster 3
Algorithms A B C D E F
K-medoids 10.68 ±

5.6
8.9 ± 2.05 3.83 ± 2.39 2.73 ±

1.7
5.21 ±
2.59

1.7 ±
2.45

Hierarchical 7.7 ±
0.12

11.3 ±
0.04

2.63 ± 0.24 3.58 ±
0.2

7.4 ±
0.3

0.53 ±
0.003

Ant-based(improved) 11.6 ±
5.9

10.27 ±
2.64

4.83 ±1.15 2.59 ±
0.8

7.16 ±
1.4

1.11 ±
0.94

Ant-based(Original) 20.6 ±
8.05

4.86 ±
3.79

3.49 ± 2.06 5.73 ±
3.7

3.21 ±
2.1

1.03 ±
2.05



Results - performance

• Silhouette index, Dunn Index, DB Index
• 3 clusters best
• Hierarchical best, our variant of ABC second best

• Prediction
• Attempted to predict final 6 tokens from first 30

• Using closest cases in cluster, and using HMM and RNN
• 40-60% accuracy, not significantly different for each method

• Run-time
• k-medoids: 600s, ABC: 7400s, Hierarchical: 18000s



Discussion

• State-token based representation of patient history is a promising 
direction in analysis of chronic condition management

• An intuitive way to think about a patient journey
• Wide range of choices to explore in state definition and distance measures

• Ant-based clustering (with appropriate heuristics) may be a promising 
middle ground between deterministic (hierarchical) and randomly 
seeded (k-means/medoids) approaches 

• Clusters can describe population groups, provide insights on patient journeys 
and (using case-base distance similarity) have potential in prediction



Questions

Thank you!
jim@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~jim/

mailto:jim@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/%7Ejim/
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