# SENTIMENT CORRELATION DISCOVERY FROM SOCIAL MEDIA TO SHARE MARKET

SIMON XIE, MAN LI, JIANXIN LI

### **POWER OF SOCIAL MEDIA**

- Rapidly increase from 7% since 2005 to 65% in 2015
- 68% of adults in U.S uses Facebook in 2018
- Some example shows social media affects share price significantly
- Attracts researchers and analytics
- Becomes an important tool for B2C communication, maintain relationship between business and customer

### SOCIAL MEDIA INFLUENCES TO SHARE PRICE

- Researches shows small business has significant effects by social media
- Special Case: Kylie Jenner and Snap Inc.

• Share value drops 6.4% after negative sentiment comment exposed to Twitter on February

2018





### **MOTIVATION**

- Why that could happen?
- Does this replicable?
- What is the correlation between?

# PATH OF DISCOVERY

METHOD TO CREATE NUMBERS FROM SENTIMENT AND SHARE MARKET

### REQUIREMENTS

- Find out sentiment of specific company across public discussion
  - Extract company-related social media posts
  - Using natural language processing to discover general discussed topic from extracted posts
  - Generate sentiment score on topics
- Compare Sentiment with share market trends
  - Collect Share price data with the same time period with posts used for sentiment extraction
  - Compare sentiment score with share price



## INSPIRATION OF SENTIMENT EXTRACT

- A model introduced by Debashin et. al in 2016 called sent\_LDA
- A model create sentiment score over set of single tweets and topic modelling
- An example uses Latent
   Dirichlet Allocation, generates
   sentiment score, and stem
   extraction



### **WORDNET**

Introduced by Miller on 1995, provides English dictionary for computer programs, for computer to understand natural English words, useful for stem extraction



# LATENT DIRICHLET ALLOCATION

- A generative statistical model Introduced in 2003 for improved topic modelling strategy
- A self-learning model with corpus only, based on variety models by Michael et. al in 1999
- Each word is treated as part of completed topic and generate probability for each word.
- Being widely used in natural language processing as its ease of use



## AFFECTIVE NORMS FOR ENGLISH WORDS

- Provided by Bradley in 1999, gives referential sentiment score for generally used words assessed by Self-Assessment Manikin (SAM) in a scale of 1-9, where 5 means neutral, 1 means negative polarity and 9 means positive polarity
- ANEW treats word in 2 dimension: Valence and Arousal. Feelings could represents with both dimension
- Evolved ANEW: Introduced in 2013, based on origin version, it provides sentiment attachment for 13,915 words

### **CHANGES NEEDS TO MADE**

- Sentiment based on every twitter cost long time and so much resources
- Using topic only is sufficient for wide-ranged amount of twitter



### SENTIMENT EXTRACTION WITH TOPIC ONLY

- A simplified version based on sent\_LDA
- Removes single twitter analysis and keep topic modelling only
- In this research, a sentiment correlation discovery is conduct on company Apple Inc. using public data on October 2017



# DATA COLLECTION

- Using Twitter tweets as data as easy to extract
- Raw Twitter data are gathered from the Internet Archive
- Extract relative tweets based on keywords associated to desired company
  - Using Google Trends and WordStream Free Keyword Tool for common topic extraction
  - Manually pick representative keyword from list provided from above
- Or Extract relative tweets based on direct mention ("@") to company's twitter account

### TWITTER EXTRACTION EXAMPLE

- Examples uses Apple Inc.
- Keyword:
  - iPhone
  - iPad
  - Apple Watch
  - Mac
  - iOS
  - AppleCare
  - Apple Music
- Direct Nomination
  - @Apple
  - @AppleSupport



# BAG-OF-WORDS EXTRACTION

- removes stopwords and take each word into object
- Stopwords: common used word which does not contain meaning or too widely used with different meanings
  - Afterwards
  - Again
  - Although
  - Computer
  - Could
  - Either
  - Except
  - (and many more)



# STEM EXTRACTION

- Looking up words in dictionary (WordNet) and find the stem of each word in the dictionary
- Stem: The origin form of word, without any transformation.
  - Word "Tall" is stem of list "Tall, Taller, Tallest"
  - Word "she" is stem of list "she, her, hers"



### OVERALL SENTIMENT SCORING

- Calculate overall sentiment score based on words and probability extracted from LDA model
- Average: summarize sentiment score of every word extracted from LDA topic model and divide word count of it
- Weighted: calculates the overall score by involving weight of every word from LDA model with equation:

LDA model with equation:
$$S_{overall} = \frac{\sum (S_{word} \times W_{word})}{\sum W_{word}}$$

 $S_{overall}$  - overall sentiment,  $S_{word}$  - sentiment of word,  $W_{word}$  - weight of word

### SENTIMENT SCORING EXAMPLE

• Word: Open

• Valence: 6.14

• Arousal: 4.43

• Word: Sad

• Valence: 2.1

• Arousal: 3.49



Assuming word Open has probability 0.4 and word Sad has probability 0.6

• Average: Valence: 4.12, Arousal: 3.96

• Weighted: Valence: 2.7336, Arousal: 3.1572



# FINANCIAL INVOLVEMENT

- Uses sentiment score to compare with share price of desired company (Apple)
- Gather historical share market data through Alpha Vantage: A free API for collecting JSON and CSV format share market data for up to 20 years

### **STRATEGY**

- Taking Sentiment score of all topic generated by LDA model as an overall sentiment score
- Run sentiment extraction on twitter related to Apple Inc, separated daily
  - That is, each day in October 2017 is one set of corpus
  - There are total 31 runs to generate 31 set of sentiment score
  - To be compare with daily share price change

## **DISCOVERY**

**USING APPLE INC ON OCTOBER 2017** 

### **TOPIC POPULARITY**

#### **DIRECT NOMINATION**

 Less than 200 tweets over 1 million English tweets daily



#### **KEYWORD MATCHING**

• Up to 4,000 tweets over 1 million English tweets



### WEIGHTED AND AVERAGE SCORE COMPARE



- Valence Score: higher means happier
- Weighted calculation is more stable than using average, and it is more reasonable with conjunction to topic modelling

# SENTIMENT COMPARE BETWEEN KEYWORD AND NOMINATION - VALENCE

#### **VALENCE**



- Valence Score: Higher means happier
- Using direct nomination seems less stable than keyword finding, and in real life it is less possible for people to feeling happy become unhappy and back quickly

# SENTIMENT COMPARE BETWEEN KEYWORD AND NOMINATION - AROUSAL

#### **AROUSAL**

- Arousal score: higher mean more active, or more forceful
- Similar to problem on Valence, less stable than using keyword





 Valence Polarity: Valence Score take away 5 (neutral feeling score)



- Valence Polarity: Valence Score take away 5 (neutral feeling score)
- Arousal Polarity: Arousal Score take away 5 (neutral feeling score)



- Valence Polarity: Valence Score take away 5 (neutral feeling score)
- Arousal Polarity: Arousal Score take away 5 (neutral feeling score)
- Daily Price Change: closing price minus opening price (for example, if closing at 105.5 and opening at 103.2, daily price change is 105.5-103.2=2.3)



- An increase of share price could correlate to increase of valence compare to monthly average.
- Higher valence means higher increase of share price
- A long term teasing (high arousal) could also build up valence and leads to increase of share price
- That shows a feeling change from "feeling interesting" to "feeling happy"



• Tweets amplification: Daily number of tweet in sample compare with monthly average. (Daily / average - 1)



- Tweets amplification: Daily number of tweet in sample compare with monthly average. (Daily / average - 1)
- In this graph, Valence polarity has been shift down 1 for visualization



- Tweets amplification: Daily number of tweet in sample compare with monthly average. (Daily / average - 1)
- In this graph, Valence polarity has been shift down 1 for visualization
- The price change has remain unchanged



- Tweets amplification: Daily number of tweet in sample compare with monthly average. (Daily / average - 1)
- In this graph, Valence polarity has been shift down 1 for visualization
- The price change has remain unchanged
- Shows a huge discussion and high sentiment could push share price upward

# **FURTHER ANALYSIS**

INSPECTION OF WHAT COULD PUSH SHARE PRICE UPWARD

### **KEYWORD INFLUENCE EXAMINATION**

- Attempt to extract which keyword leads to high sentiment in order to push share price forward
- By calculating product of valence polarity and weight as "Influence"
  - For example, a word with sentiment 7 and probability 0.3, its influence is 2.1



| word      | weight | valence | valence polarity | Influence |
|-----------|--------|---------|------------------|-----------|
| like      | 0.32   | 7.44    | 2.44             | 0.7808    |
| new       | 0.294  | 7.68    | 2.68             | 0.78792   |
| know      | 0.249  | 6.82    | 1.82             | 0.45318   |
| cheese    | 0.194  | 6.81    | 1.81             | 0.35114   |
| sure      | 0.187  | 6.64    | 1.64             | 0.30668   |
| perfect   | 0.184  | 7.19    | 2.19             | 0.40296   |
| paragraph | 0.179  | 5.4     | 0.4              | 0.0716    |
| multiple  | 0.178  | 5       | 0                | 0         |
| polite    | 0.177  | 6.57    | 1.57             | 0.27789   |
| grammar   | 0.177  | 6.25    | 1.25             | 0.22125   |

Work output from LDA model perform by stem extracted from twitter set filtered by keyword searching, on 5 October, sorted by Influence (Weight \* Valence Polarity)

# INFLUENCE OF WORD ON 5 OCTOBER

- Highest word: like, new
- Provides a potential new technology release information



| Word    | Weight | Valence | Valence Polarity | Influence |
|---------|--------|---------|------------------|-----------|
| money   | 0.832  | 7.1     | 2.1              | 1.7472    |
| get     | 0.687  | 6.09    | 1.09             | 0.74883   |
| love    | 0.23   | 8       | 3                | 0.69      |
| one     | 0.613  | 6.09    | 1.09             | 0.66817   |
| new     | 0.204  | 7.68    | 2.68             | 0.54672   |
| picture | 0.241  | 6.73    | 1.73             | 0.41693   |
| keep    | 0.251  | 6.32    | 1.32             | 0.33132   |
| video   | 0.171  | 6.64    | 1.64             | 0.28044   |
| buy     | 0.15   | 6.82    | 1.82             | 0.273     |
| know    | 0.139  | 6.82    | 1.82             | 0.25298   |

Work output from LDA model perform by stem extracted from twitter set filtered by keyword searching, on 16 October, sorted by Influence (Weight \* Valence Polarity)

# INFLUENCE OF WORD ON 16 OCTOBER

- Highest word: money, get
- Potential exposure of financial information
- Also proves influential of investor to share price change



| Word   | Weight | Valence | Valence Polarity | Influence |
|--------|--------|---------|------------------|-----------|
| new    | 0.237  | 7.68    | 2.68             | 0.63516   |
| music  | 0.231  | 7.67    | 2.67             | 0.61677   |
| apple  | 0.233  | 6.62    | 1.62             | 0.37746   |
| free   | 0.094  | 8.25    | 3.25             | 0.3055    |
| phone  | 0.275  | 6.09    | 1.09             | 0.29975   |
| cheese | 0.163  | 6.81    | 1.81             | 0.29503   |
| laptop | 0.131  | 6.95    | 1.95             | 0.25545   |
| get    | 0.229  | 6.09    | 1.09             | 0.24961   |
| video  | 0.143  | 6.64    | 1.64             | 0.23452   |
| win    | 0.119  | 6.97    | 1.97             | 0.23443   |

Work output from LDA model perform by stem extracted from twitter set filtered by keyword searching, on 27 October, sorted by Influence (Weight \* Valence Polarity)

# INFLUENCE OF WORD ON 27 OCTOBER

- Highest word: new, music
- Potential discussion of services provided by company

### RESOLUTION

- Any discussion drags satisfaction of product, new product release, or discussion with financial enclosure has high influence due to high valence
- The word "cheese" in each list shows an improvement for keyword finding: Keyword Mac could be MacBook, could also be Big Mac, or Mac 'n' Cheese.

# **DISCUSSION**

### WHAT THIS RESEARCH COULD DO

- Provides a creative way to predict business model or share market trends
- Provides another practical application to sentiment analysis, together with natural language processing
- Provides industries/business inspirations to promote their products and strategy planning for promotion

### **VALIDITY OF RESEARCH**

- Due to insufficient research resource data gathered, a further validation is required to prove applicability to multiple businesses
  - Twitter data other than October 2017 from the time research commenced (April 2018) provided by the Internet Archive are either incomplete, corrupted or out-of-date.
  - Apple Inc. has been used in this research as it is an international company which would have social media discussion globally and hence provide large amount of sample data
- A more accrue result could be provided if there are self-analysis model for finding business-specific keyword and use for twitter extraction

### **FURTHER STEP FROM THIS RESEARCH**

- Using machine learning to build models as share price prediction
- Further analysis on different dimension of share price, for better understanding correlation
- Trying to discover correlation involving dominance sentiment to build up 3D model

### ETHICS PROBLEM REVEALED FROM RESEARCH

- Influential person has higher chance of share market manipulation:
  - Billionaire
  - News Media
  - Pop Star
- Potential misleading news, fake news, or malicious offence from influential person could destroy a business
- People should take responsibility and think twice before they expose their comment on business

# THANK YOU